

KRISHNASAMY

College of

ENGINEERING & TECHNOLOGY

Approved by AICTE & Affiliated to Anna University

DEPARTMENT OF ECE

30.11.2022

CIRCULAR

Ref.: KCET/ECE/VAC/CIRCULAR/2022-23/01.

The following Value Added Course will be conducted during the academic year 2022-2023. The course will be conducted from 23.01.2023 to 28.01.2023. Students are instructed to register their names in the course allotted to them.

Note: Students are instructed to attend the program without fail.

S.No.	Course Code	Name of the Course	Year	No. of Period	Course Coordinator
1	EC-VAC2201	MEMS DESIGN	IV	30	Er.V.Kokila ,AP-ECE
2	EC-VAC2202	DESIGN OF SENSORS	III	30	Er.S.R.Karthiga,AP-ECE

Copy to:

Class Room

Class In charge

Department File

T. Zoliljzz HOD/ECE

KRISHNASAMY

College of

ENGINEERING & TECHNOLOGY

Approved by AICTE & Affiliated to Anna University

SYLLABUS

Subject Code/ Subject Name: EC-VAC2201 - MEMS DESIGN Dura

Duration: 30 Hours

COURSE OBJECTIVES:

- To understand the basic electrical and mechanical concepts of MEMS design
- To understand the design aspects of electrostatic sensors and actuators
- To understand the design aspects of thermal sensors and actuators
- To understand the design aspects of piezoelectric sensors and actuators
- To understand the design aspects of magnetic sensors and actuators

MODULE I ESSENTIAL ELECTRIC AND MECHANICAL CONCEPTS

. 6

Conductivity of semiconductors, Crystal planes and orientations, stress and strain, flexural beam bending analysis under simple loading conditions, Dynamic system, resonant frequency and quality factor.

MODULE II ELECTRO STATIC SESNING AND ACTUATION

6

Parallel plate capacitor, Applications of parallel plate capacitors- inertial sensor, pressure sensor, flow sensor, tactile sensor, parallel plate actuators, interdigitated finger capacitors, applications of comb drive devices.

MODULE III THERMAL SENSING AND ACTUATION

6

Fundamentals of thermal transfer, Sensors and actuators based on thermal expansion, Thermal couples, Thermal resistors, Applications- Infrared sensors, flow sensors, Inertial sensors, other sensors.

MODULE IV PIEZOELECTRIC SENSING AND ACTUATION

6

Mathematical description of piezoelectric effects, Cantilever piezoelectric actuator model, properties of piezoelectric materials –Quartz, PZT, PVDF, ZnO, Applications – Acoustic sensors, Tactile sensors.

MODULE V MAGNETIC SENSING AND ACTUATION

6

Concepts and principles- magnetization and nomenclatures, principles of micro magnetic actuators, fabrication of micro magnetic components- deposition, design and fabrication of magnetic coil, MEMS magnetic actuators.

30 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

CO1: Understand the basics of MEMS design aspects.

CO2: Apply the knowledge in the development of electro static sensors and actuators.

CO3: Apply the knowledge in the development of thermal sensors and actuators.

CO4: Apply the knowledge in the development of piezoelectric sensors and actuators.

CO5: Apply the knowledge in the development of magnetic sensors and actuators.

e. Short Splill22